植物による防災の可能性

地学班 金田和 小林聖弥 土田柊 宮本颯希

松島竜平先生

はじめに

はじめに <土砂災害を防ぐために>

腐葉土が堆積 →土壌が厚くなる。 **土壌の吸水、保水力↑**。

土壌による土砂災害 防止効果○

森林なし:地表は乾燥

→土壌の吸水、保水力↓

雨水が地表を流れ

<u>土砂災害が起こりやすい。</u>

土砂災害防止広報センター表層崩壊(ひょうそうほうかい)と深層崩壊(しんそうほうかい)とは https://www.sabopc.or.jp/library/collapse/

先行研究

兵庫県立神戸高等学校(2014) 土砂災害モデルの製作 ~森林は土砂災害を防止しうるか否か~

樹木があることで土砂は崩壊しにくくなった

疑問点

植物の種類(根の形状)によって、 崩壊の起こりにくさに違いは出るのか…

研究動機

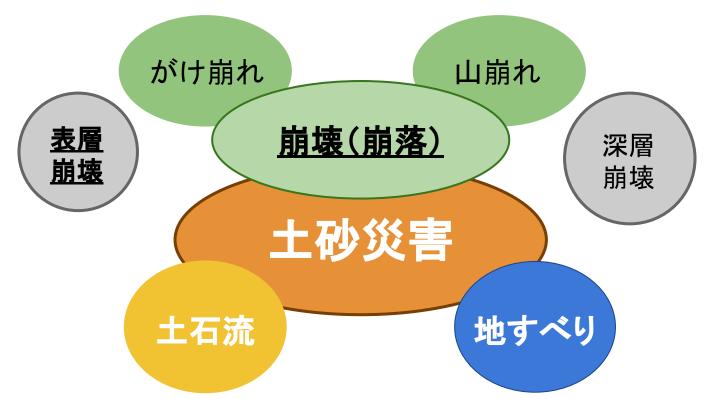
植生による土砂災害の被害の 抑制を耳にした。

研究すること

植物の種類による

防災効果の違い

効果する<u>物理的要因、特徴</u>


(特に根に注目)

研究手順

導入	研究目的について		
	事前準備・研究範囲について		
	予備実験について		
実験	崩壊の再現・実験成功までについて		
	根を使った実験について		
+1.4	結論•考察		
まとめ	展望		

事前準備・研究範囲について

土砂災害の種類

日本応用地質学会https://www.jseg.or.jp/chushikoku/assets/file/faq/2-05.pdfを参考とする

事前準備・研究範囲について

<u>崩壊</u>

短期間に、かつ強い雨 いわゆる**集中豪雨** →急な斜面が**突然崩れ落ちる**

地すべり

不透水層と透水層の間に 地下水の増加 →浮力発生 土砂が滑り落ちる 比較的ゆっくり

事前準備・研究範囲について

<u>崩壊</u>

短時間、強い雨(**集中豪雨**) →土塊が滑落

比較的含水比が低い

土石流

短時間、強い雨(集中豪雨)

→土砂、流木、水が渓流を

高速で流下

比較的含水比が高い

実験方法

- •再現装置で崩壊を再現する。
- ・崩壊が起こるまでの**水量で比較。**
- 根の有無を変える。
- •根の形状を変えて比較。

固定:	久.//
四人:	未 十
土壌	マサ土
斜面の角度(°)	30°
降水方法	ジョウロ
根の再現	モール スチールウール

実験方法

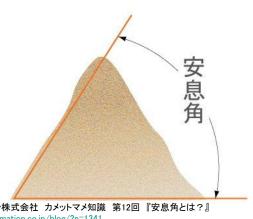
·使用する土「**マサ土**」

···マサ土: **ふるい分け**する

4mm~0.5mm(細礫~粗粒砂 サイズ)

clastics	砕屑物	mm	mm	φ
boulder	6碟			
	摩擦がオ	きい		
pebble	中華	1040	- 64	-6
granule	細礫			
very-coarse sand	極粗粒砂	_ 2	2	-1 0
coarse sand	粗粒砂	-1	1	
medium sand	中粒砂	0.5	1/2	1
fine sand	細粒砂	0.125	1/8	3
very-fine sand	極細粒砂	0.123	1/6	4
実験	後の回り		11110	5
fine silt	細粒シルト	0.016	1/64	-6
very-fine silt	極細粒シルト	0.008	1/128	7
clay	粘土	0.004	1/256	8

予備実験について

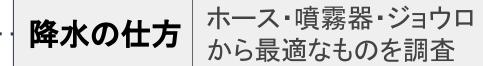

~安息角の測定~

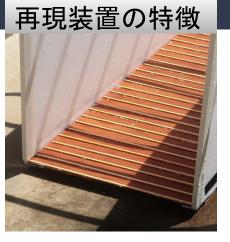
安息角とは

株式会社環境衛生研究所 安息角・崩潰角・差角より

「粉粒体粒子郡が相互の摩擦によって、その表面層が静止状態を保つ ことができる水平面との間の最大角をいう。」

> 土が崩れないで安定しているときの 土の斜面の角度


マサ土の安息角の測定



再現性を高める ポイント

先行研究を模倣 実験の中で改良

使用した噴霧器

<降水の仕方>

<u>ホース</u>

- →・水道と繋いだ。
 - ⇒総雨量、降水量(mm/h)がわからない。

- ・水量が少なすぎる。
 - ⇒崩壊が起きない。

<降水の仕方>

噴霧器

- 降水量(mm/h)を設定できる。

27プッシュで1L散布

降水量の再現性を優先

-全体に均一に降水できない。

手動で振り撒く

※再現した降水量は観測史上最高 153mm/h(千葉県)をもとに**150mm/h**

<u>噴霧器</u>

・何度実験をしても崩壊は起きない

(原因の考察)

- 多くの水が跳ね返り浸透していない。
- →本当に降水量の再現性があるのか
- •マサ土の水はけが良すぎる。
- →水が土壌にたまっていない。

ジョウロ

- •比較的広範囲に均一に散布できる。
- ・総降水量は測定できる。

・降水量が多すぎる。

再現性に欠ける

確実に崩壊は起きる

崩壊について

崩壊について

今回の実験では土石流は対象とせず崩壊のみを対象とする。

崩壊

土石流

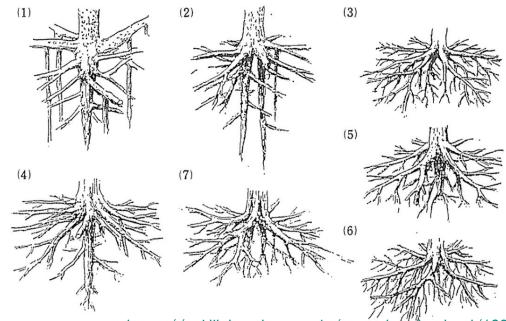
土砂に亀裂が入るよう にして滑落

土砂が高速で流下

崩壊とみなす基準

-1回目のずれが確認できた際に崩壊したとみなす。

<実験方法まとめ>

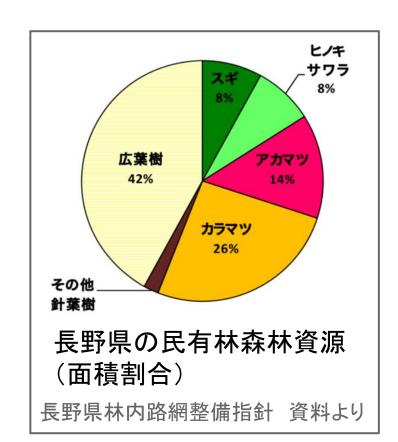

1. 斜面30°でマサ土を盛る。

2. ジョウロで降水させる。

3. 崩壊が起こる(一度ずれる)まで続ける。

4. 崩壊が起きた時の総降水量を測定する。

- <根の種類の調査>
- ・根の種類
- 柱状根系樹種(1)、垂直根樹種(2)、垂直・斜方根樹種(3)(4)、
- 斜方根型樹種(5)(7)、水平根樹種(6)に区分される。

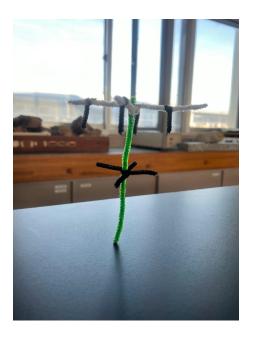


https://api.lib.kyushu-u.ac.jp/opac download md/10871/p083.pdより引用

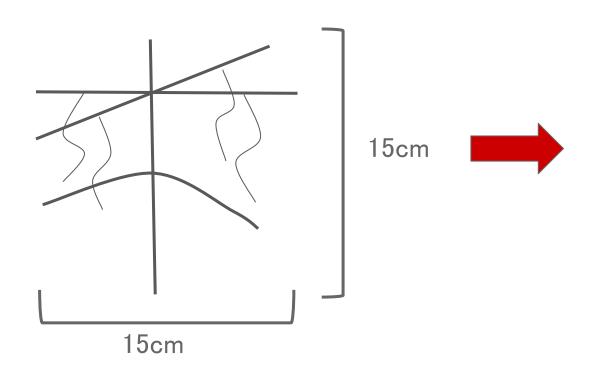
対象にする樹木

- ・長野県に多く生息する樹木
 - =針葉樹
 - =スギ、上ノキ・サワラ、

アカマツ、カラマツ、…

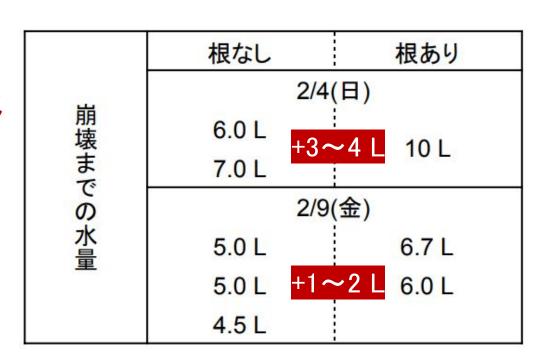

根の模型の素材

2月4日



2月9日

<根のモデル>


(1)根があることによる防災効果はあるのか

実験結果

•根があると崩壊するまでの水

量は増加している。

-2/4 2/9で結果に差がある。

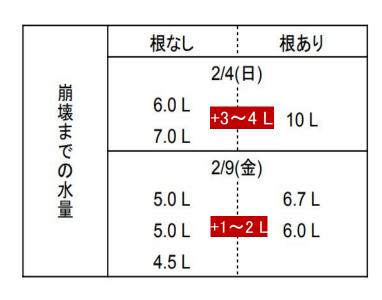
(1)根があることによる防災効果はあるのか

考察

- ・根があることによる防災効果の期待大
- →データ量が少なく正確ではない
- →1Lの違いが一時間あたりの降水量384mm

(1)根があることによる防災効果はあるのか

考察


- ・根があることによる防災効果の期待大
- →根を境に亀裂が入っている

(1)根があることによる防災効果はあるのか

考察

- 今の模型は再現するのに適しているか
- 2/4と2/9の結果で差にばらつきがある
- →素材によって効果が違う

展望

研究目的...

「植物、根の種類による防災効果の違い」

を調べる

現状

「崩壊を起こす」「実験条件を整える」「根の防災効果を確かめる」

まで

現実験

次実験

実験を繰り返し正確性↑

根の再現が現状のままで良いのか思索

根の形状を変えて実験する。

長野県に多い樹木の根について調べたい。

ゴール

樹木の種類(根)により

防災効果が違うのか突き止める!!

天龍村村長のブログ 国道418号、戸口付近で大規模な山腹崩壊発生 http://soncho.vill-tenryu.jp/%E5%9B%BD%E9%81%93%EF%BC%94%EF%BC%91%EF%BC%98%E5%8F%B7%E3%80%81%E6%88%B8%E5%8F%A3%E4%BB%98%E8%BF%91%E3%81%A7%E5%A4%A7

<u>%E8%A6%8F%E6%A8%A1%E3%81%AA%E5%B1%B1%E8%85%B9%E5%B4%A9%E5%A3%8A%E7%99%BA%E7%94%9F/</u>

土砂災害防止広報センター 表層崩壊 (ひょうそうほうかい)と深層崩壊(しんそうほうかい)とは https://www.sabopc.or.jp/library/collapse/

土砂災害防止広報センター 土砂災害とは 地すべり
https://www.sabopc.or.jp/library/landslide/ https://api.lib.kyushu-u.ac.jp/opac_download_md/10871/p083.pd

土砂災害防止広報センター 土砂災害とは がけくずれ https://www.sabopc.or.jp/library/landslide/

Wikipedia『西穂高岳』 https://ja.wikipedia.org/wiki/%E8%A5%BF%E7%A9%82%E9%AB%98%E5%B2%B3

関西オートメイション株式会社 カメットマメ知識 第 12回 『安息角とは?』 https://kansai-automation.co.jp/blog/?p=1341

株式会社環境衛生研究所 安息角・崩潰角・差角 https://www.eiseiken.co.jp/service/funtai/angle-repose.html より